Knigionline.co » Наука, Образование » Магия математики: Как найти x и зачем это нужно

Магия математики: Как найти x и зачем это нужно - Артур Бенджамин (2015)

Магия математики Как найти x и зачем это нужно
  • Год:
    2015
  • Название:
    Магия математики: Как найти x и зачем это нужно
  • Автор:
  • Жанр:
  • Язык:
    Русский
  • Перевел:
    Д. Глебов
  • Издательство:
    Альпина Диджитал
  • Страниц:
    13
  • ISBN:
    9785961444667
  • Рейтинг:
    3 (1 голос)
  • Ваша оценка:
Почему можно было раньше узнавать о количествах, алгебре и математики в такой увлекательной конфигурации? Почему можно было сразу растолковать, зачем нам все эти синусоиды, интегралы и случайности. Оказывается, математика обступает нас. Она повсюду! По параболе струится струя водички из фонтана, а механики используют явления параболы, чтобы рассчитать траекториь полета вертолётов и спутников. С подмогой интегралов нельзя вычислить, сколько вам нужно паркета, чтобы застелить помещенье непрямоугольной формы. А уменье вычислять случайность события подсобит выиграть в преферанс. " Магия алгебры " – та книга, о которой вы грезили в школе. Все, от чего рано-ранее голова шагала кругом, теперь-то оказывается простеньким и ясным: четырёхугольник Паскаля, физико-математическая бесконечность, колдовские свойства количеств, последовательность Комбинаторики, золотое сечение. А всего профессиональный иллюзионист Артур Генри делится секретиками математических трюков. Продемонстрируйте их – ваши слушатели точно двинутся за калькуляторами, чтобы упомнить.

Магия математики: Как найти x и зачем это нужно - Артур Бенджамин читать онлайн бесплатно полную версию книги

То, что справа – квадраты целых чисел. 1 × 1; 2 × 2; 3 × 3 и т. д. Сложно не заметить следующую закономерность: сумма первых n нечетных чисел равняется n × n. Или n². Но что, если это просто совпадение? Чуть позже, в главе 6, мы с вами увидим несколько путей развития этой формулы, но уже и сейчас понятно, что у такой простой закономерности должно быть не менее простое объяснение. Самое мое любимое – методом подсчета кружков: он наглядно показывает, почему числа вроде 25 называются квадратами. Но почему вдруг мы должны складывать первые 5 нечетных чисел с 5²? А просто посмотрите на квадрат размером 5 на 5:

Кружков в нем 5 × 5 = 25, это очевидно. Но давайте подсчитаем иначе. Начнем с одинокого кружка в левом верхнем углу. Его окружают 3 кружка, потом 5, потом 7 и, наконец, 9. Следовательно,

1 + 3 + 5 + 7 + 9 = 25

И возьми мы квадрат со сторонами n на n, его можно будет легко разбить на n-ное количество L-образных секторов, в каждом из которых будет соответственно 1, 3, 5…., (2n – 1) кружков. Это и есть формула суммы первыхnнечетных чисел

1 + 3 + 5 + … + (2n– 1) =n²

Отступление

Чуть позже мы еще вернемся к методу подсчета кружков (как и к методу решения задачи двумя разными способами), и вы увидите, к каким интересным результатам он может привести в высшей математике. Но и для понимания основ он не менее полезен. Почему, например, 3 × 5 = 5 × 3? Уверен, вы никогда даже не задавались таким вопросом: просто однажды в детстве вам сказали, что порядок чисел при умножении абсолютно не важен (математики, кстати, называют это законом коммутативности). Но почему же три пакетика по пять жемчужин – это то же, что и пять пакетиков по три жемчужины? Самый простой способ объяснить этот закон – посчитать кружки в прямоугольнике размером 3 на 5. Считая ряд за рядом, мы видим 3 ряда, в каждом из них 5 кружков, то есть во всем прямоугольнике 3 × 5 кружков. С другой стороны, мы можем подсчитать столбики, а не ряды: по 3 кружка в каждом из 5 рядов, значит, всего кружков 5 × 3.

Эта закономерность может привести нас к другой, еще более красивой. Раз уж мы хотим заставить числа танцевать, почему бы не сделать это и с их квадратами?

Взгляните вот на такую пирамидку уравнений:

Какую закономерность вы видите? Подсчитать количество чисел в каждом ряду несложно: 3, 5, 7, 9, 11 и так далее. А дальше неожиданность: первое число каждого ряда – по крайней мере, первых 5 записанных здесь рядов – является квадратом числа. И правда: 1, 4, 9, 16, 25… Почему так получается? Возьмем пятый ряд. Сколько чисел ему предшествуют? Давайте сложим их количество: 3 + 5 + 7 + 9. Прибавим к ним еще единицу, и у нас получится первое число пятого ряда – сумма первых 5 нечетных чисел, которая, как мы уже знаем, равна 5².

А теперь просчитаем пятое уравнение, ничего к нему не добавляя. Как бы это сделал Гаусс? Если пока не обращать внимания на начальное 25, слева у нас останется 5 чисел, каждое из которых будет ровно на 5 меньше, чем соответствующее ему число справа.

То есть сумма чисел справа будет ровно на 25 больше суммы чисел слева. Но это без учета 25, которые стоят в начале. А с ними у нас получается именно тот результат, который обещан нам знаком равенства. Следуя той же логике и призвав на помощь алгебру, мы докажем, что этот ряд можно продолжать бесконечно.

Отступление

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий