Knigionline.co » Наука, Образование » Магия математики: Как найти x и зачем это нужно

Магия математики: Как найти x и зачем это нужно - Артур Бенджамин (2015)

Магия математики Как найти x и зачем это нужно
  • Год:
    2015
  • Название:
    Магия математики: Как найти x и зачем это нужно
  • Автор:
  • Жанр:
  • Язык:
    Русский
  • Перевел:
    Д. Глебов
  • Издательство:
    Альпина Диджитал
  • Страниц:
    13
  • ISBN:
    9785961444667
  • Рейтинг:
    3 (1 голос)
  • Ваша оценка:
Почему можно было раньше узнавать о количествах, алгебре и математики в такой увлекательной конфигурации? Почему можно было сразу растолковать, зачем нам все эти синусоиды, интегралы и случайности. Оказывается, математика обступает нас. Она повсюду! По параболе струится струя водички из фонтана, а механики используют явления параболы, чтобы рассчитать траекториь полета вертолётов и спутников. С подмогой интегралов нельзя вычислить, сколько вам нужно паркета, чтобы застелить помещенье непрямоугольной формы. А уменье вычислять случайность события подсобит выиграть в преферанс. " Магия алгебры " – та книга, о которой вы грезили в школе. Все, от чего рано-ранее голова шагала кругом, теперь-то оказывается простеньким и ясным: четырёхугольник Паскаля, физико-математическая бесконечность, колдовские свойства количеств, последовательность Комбинаторики, золотое сечение. А всего профессиональный иллюзионист Артур Генри делится секретиками математических трюков. Продемонстрируйте их – ваши слушатели точно двинутся за калькуляторами, чтобы упомнить.

Магия математики: Как найти x и зачем это нужно - Артур Бенджамин читать онлайн бесплатно полную версию книги

Эта закономерность была несомненна. Чем дальше отстояли друг от друга числа, тем меньше становилось произведение. И насколько они отдалялись от 100? На 1, на 4, на 9, 16, 25… То есть на 1², 2², 3², 4², 5² и т. д. А потом мне стало интересно, работает ли эта закономерность для чисел, дающих другую сумму. Я решил попробовать 26:

И я снова увидел, что наибольшее произведение дало умножение двух одинаковых чисел. А потом произведение стало уменьшаться с интервалом сначала 1, потом 4, потом 9 и т. д. Еще несколько подобных примеров убедили меня, что закономерность была строгой (ее алгебраическое выражение я покажу чуть позже). Выяснил я и то, что ее можно применять для быстрого возведения чисел в квадрат.

Допустим, нам нужно знать квадрат 13. Вместо того чтобы умножать 13 × 13, можно сделать умножение попроще: 10 × 16 = 160. До правильного ответа уже рукой подать, и чтобы его получить, достаточно будет прибавить возведенное в квадрат 3 – число, составляющее разницу между 13 и числами, которые мы перемножили. То есть:

13² = 10 × 16 + 3² = 160 + 9 = 169

Можно взять еще один пример, скажем, 98 × 98. Для удобства к первому числу добавим 2 до 100, а от второго отнимем 2 до 96. Значит, к их произведению нужно будет прибавить 2². Вот наше уравнение:

98²= 100 × 96 + 2² = 9600 + 4 = 9604

Особенно легко применять эту схему к числам, которые заканчиваются на 5: если уменьшить и увеличить их на 5, оперировать придется круглыми числами. Например:

35² = 30 × 40 + 5² = 1200 + 25 = 1225

55² = 50 × 60 +5² = 3000 + 25 = 3025

85² = 80 × 90 + 5² = 7200 + 25 = 7225

Теперь попробуем возвести в уме в квадрат 59. Увеличив и уменьшив это число на единицу, получим 59² = (60 × 58) + 1². Но как умножить в уме 60 на 58? Простой совет из двух слов: слева направо. Забудем на время про 0 и подсчитаем 6 × 58: 6 × 50 = 300 и 6 × 8 = 48. Потом сложим эти два результата (опять же, слева направо) и получим 348. И добавим ноль в конце, то есть 60 × 58 = 3480. Поэтому:

59² = 60 × 58 + 1² = 3480 + 1 = 3481

Отступление

А вот алгебраическое доказательство этого метода (перечитайте это отступление после того, как во второй главе мы поговорим о разнице квадратов):

А² = (A+d) (A–d) +d²

где A – число, возводимое в квадрат, d – разность с ближайшим круглым числом (формула, кстати, справедлива для любого d). Для примера возведем в квадрат 59: А = 59, d = 1, значит, формула превращается в (59 + 1) × (59 – 1) + 1², как и в предыдущем вычислении.

Теперь, когда вы профессионально возводите в квадрат двузначные числа, можно попробовать и трехзначные. Если помните, 12² = 144, значит:

112² = (100 × 124) + 12² = 12 400 + 144 = 12 544

Есть еще одна подобная формула, которая работает для любых двух чисел, близких к сотне. Человек, который становится случайным свидетелем таких вычислений, испытывает чувство, будто наблюдает за трюком фокусника. Вот, например, 104 × 109. Рядом с каждым из них пишем число, на которое оно превышает сотню (см. пример ниже). В левом столбце сложим первое число со второй разностью и запишем результат: 104 + 9 = 113. В правом столбце перемножим две разности: 4 × 9 = 36. «Соединим» эти числа, то есть запишем их одно за другим и – тадам! – волшебным образом получим ответ: 11 336.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий