Knigionline.co » Наука, Образование » Магия математики: Как найти x и зачем это нужно

Магия математики: Как найти x и зачем это нужно - Артур Бенджамин (2015)

Магия математики Как найти x и зачем это нужно
  • Год:
    2015
  • Название:
    Магия математики: Как найти x и зачем это нужно
  • Автор:
  • Жанр:
  • Язык:
    Русский
  • Перевел:
    Д. Глебов
  • Издательство:
    Альпина Диджитал
  • Страниц:
    13
  • ISBN:
    9785961444667
  • Рейтинг:
    3 (1 голос)
  • Ваша оценка:
Почему можно было раньше узнавать о количествах, алгебре и математики в такой увлекательной конфигурации? Почему можно было сразу растолковать, зачем нам все эти синусоиды, интегралы и случайности. Оказывается, математика обступает нас. Она повсюду! По параболе струится струя водички из фонтана, а механики используют явления параболы, чтобы рассчитать траекториь полета вертолётов и спутников. С подмогой интегралов нельзя вычислить, сколько вам нужно паркета, чтобы застелить помещенье непрямоугольной формы. А уменье вычислять случайность события подсобит выиграть в преферанс. " Магия алгебры " – та книга, о которой вы грезили в школе. Все, от чего рано-ранее голова шагала кругом, теперь-то оказывается простеньким и ясным: четырёхугольник Паскаля, физико-математическая бесконечность, колдовские свойства количеств, последовательность Комбинаторики, золотое сечение. А всего профессиональный иллюзионист Артур Генри делится секретиками математических трюков. Продемонстрируйте их – ваши слушатели точно двинутся за калькуляторами, чтобы упомнить.

Магия математики: Как найти x и зачем это нужно - Артур Бенджамин читать онлайн бесплатно полную версию книги

А теперь – специально для тех, кто хотел немного алгебры. Ряду n предшествует количество чисел, равное 3 + 5 + 7 +… + (2n – 1) = n² – 1, поэтому левая сторона нашего уравнения должна начинаться с числа n², за которым следует n последовательных чисел, от n² + 1 до n² + n. Справа – n последовательных чисел, начиная с n² + n + 1, заканчивая n² + 2n. Если мы временно «забудем» про число n² слева, то увидим, что каждое из n чисел справа на n больше, чем соответствующее ему последовательное число слева. Разница при этом составляет n × n, то есть n². Закономерность эта компенсируется начальным n² слева, поэтому-то левая и правая части и равны.

Перейдем к другой закономерности. Как мы уже видели, из нечетных чисел можно составлять квадраты. А теперь посмотрим, что произойдет, если собрать их в один большой треугольник – вроде того, что изображен чуть ниже.

Так отлично видно, что 3 + 5 = 8, а 7 + 9 + 11 = 27, а 13 + 15 + 17 + 19 = 64. Что общего у 1, 8, 27 и 64? Да это же полные кубы чисел! Например, если сложить между собой пять чисел пятого ряда, мы получим:

21 + 23 + 25 + 27 + 29 = 125 = 5 × 5 × 5 = 5³

Логика вроде бы подсказывает, что сумма чисел в ряду n будет равна n³. Но насколько верным будет этот вывод? Не простое ли это совпадение? Чтобы лучше понять эту закономерность, посмотрим на числа в середине 1, 3 и 5 рядов. Что мы видим? 1, 9 и 25. То есть квадраты. В середине 2 и 4 рядов чисел нет, но по сторонам центра 2 ряда видим числа 3 и 5, среднее арифметическое которых – 4, а по сторонам центра 4 ряда – 15 и 17 со средним арифметическим 16. Давайте подумаем, как эту закономерность можно использовать.

Снова возьмем 4 ряд. Что мы тут видим? А видим мы, что сумма всех чисел в нем есть 5³ – и не нужно к ним ничего добавлять, чтобы заметить: все они симметрично расположены вокруг 25. Так как среднее арифметическое этих чисел – 5², уравнение преобразуется в 5² + 5² + 5² + 5² + 5² = 5 × 5², то есть 5³. То же справедливо и в отношении 4 ряда: среднее арифметическое всех чисел в нем – 4², их сумма – 4³. Чуть-чуть алгебры (к которой мы здесь не прибегаем), и вы легко сделаете вывод, что среднее арифметическое n чисел ряда n равно n², а их сумма равна n³, что и требовалось доказать.

Кстати, если уж мы взялись оперировать квадратами и кубами, не могу удержаться, чтобы не указать вам на еще одну закономерность. Что получится, если сложить кубы чисел, начиная с 1³?

Подсчитывая сумму кубов, мы получаем 1, 9, 36, 100, 225 и т. д. – числа, которые являются полными квадратами. Но это не любые квадраты, а квадраты 1, 3, 6, 10, 15 и т. д. – треугольных чисел! Мы уже знаем, что они по своей сути являются суммами простых чисел, а значит,

1³ + 2³ + 3³ + 4³ + 5³ = 225 = 15² = (1 + 2 + 3 + 4 + 5)²

Другими словами, сумма кубов первых n чисел есть квадрат суммы этих самых первых n чисел. Подтвердить это мы пока не можем, но в главе 6 пару доказательств увидим.

Как быстро считать в уме

Среди читателей наверняка найдутся те, кто, познакомившись с этими примерами, скажет: «Ух ты, здо́рово! Но какая от всего этого польза?» Здесь в любом математике проснулся бы художник, и в ответ вы услышали бы: «Разве нужно красоте оправдание иное, нежели сама красота?» Ведь чем лучше мы понимаем числовые закономерности, тем глубже постигаем их красоту. И все-таки иногда они приносят практическую пользу.

Вот простая закономерность, которую мне посчастливилось обнаружить в юности (даже если я и не был первооткрывателем). Я смотрел на пары чисел, которые в сумме давали 20 (10 и 10, например, или 9 и 11), и думал, а какие из них надо перемножить, чтобы получить наибольшее произведение? Логика подсказывала, что это 10 на 10, и моя схема эта подтвердила.

Перейти
Наш сайт автоматически запоминает страницу, где вы остановились, вы можете продолжить чтение в любой момент
Оставить комментарий